

平成14年度 宇宙開発事業団 技術研究本部 研究成果報告会

国際宇宙ステーション利用材料曝露実験概要

平成15年6月6日(金) アジュール竹芝

宇宙開発事業団 技術研究本部 マテリアル・機構技術グループ 今川 吉郎

はじめに

技術研究本部マテリアル・機構技術グループが進めている国際宇宙ステーション(ISS)を利用した材料曝露実験は、ISSの最も早期の利用を実現した宇宙実験の一つである。

<u>プロジェクトとの関わり</u>

<u>1.ISS利用機会の有効活用</u>

・「きぼう」船外実験プラットフォーム初期利用(JEM/MPAC&SEED実験)

・ISS初期利用(ロシアサービスモジュール利用) (SM/MPAC&SEED実験)

2.得られた実験成果のISS、人工衛星等の各種プロジェクトへの反映

国際宇宙ステーション(1)

国際宇宙ステーションは、地上から約400km上空に建設される 巨大な有人実験施設です。米国が提唱し、米、日、欧、露、加 等の16ヶ国が参加して、1998年から宇宙ステーションの建設を 開始しています。宇宙ステーションが完成するのは2008年以降 の予定です。

©NASA

進行方向をラム側(RAM側)と呼び、進行方向の逆方向をウェ ーク側(WAKE側)と呼びます。ウェークとは、元々、船の後ろ にできる航跡を意味します。

宇宙実証試験

- 微小粒子捕獲実験及び材料曝露実験 -

微小粒子捕獲実験:スペースデブリ、マイクロメテオロイド等の宇宙空間に存在 (MPAC実験) する微小粒子を捕獲、その起源や存在・分布量を把握。 ➡ 宇宙環境モデルの最新化に貢献

材料曝露実験 : 宇宙機用部品・材料の耐宇宙環境性評価、劣化メカニズム解析。 (SEED実験) (耐原子状酸素性、耐紫外線性、耐放射線性、汚染評価等)

⇒宇宙機の信頼性向上に貢献

▼ 地上評価試験のリファレンス

宇宙ステーション(ISS)内2ヶ所で実験を実施し、両者の環境を比較

「きぼう」船外実験プラットフォーム利用 MPAC&SEED実験

ISS進行方向に向かって遮蔽物・汚染の影響が少ない環境での評価が可能。最前方へ搭載実施予定:2007~2010年(約3年間)

サービスモジュール利用 MPAC&SEED実験

ISS進行方向に向かって 汚染等の影響を加味した評価が可能。 最後方へ搭載 実施中:2001~2002年(約1年間)

~ 2003年(約11日)

~ 2004年(約3年間)

<u>ISS利用により、従来より長期間の曝露実験が可能。</u>

5

二つのMPAC&SEED実験

「きぼう」船外実験プラットフォーム利用 MPAC&SEED実験

MPAC&SEED**実験スケジュール**

実験中の装置拡大写真 (第1回サンプル回収前)

第1回サンプル回収船外活動 (2002年8月)

NASDA

サービスモジュール利用 MPAC&SEED

RAM面: ISS進行方向 WAKE面: ISS逆進行方向

赤枠内:材料曝露実験部分 緑枠内:微小粒子捕獲実験部分

SM/SEED第1回回収試料の解析結果(中間報告)

SM材料曝露実験装置搭載実験試料

	搭載実験試料名	実験試料提案機関	主な用途	
1	CF/Polycyanate	宣十重工業 (株)	 	
2	CF/PIXA			
3	PEEK(張力負荷)	北海道大学 大学院	宇宙用膜構造物用構造材料	
4	AIN			
5	SiC (反応焼結)			
6	Sic (HIP)	東京工業大学 大学院	宇宙用構造材料·機能材料	
7	TiN coated Al			
8	TiN coated Al2O3			
9	Ball Bearing -1		宇宙用機構部品	
10	Ball Bearing -2	東北大学 大学院		
11	Ball Bearing -3			
12	SUS304		宇宙用固体潤滑膜	
13	Cu coated SUS304			
14	CuBN coated SUS304	物質·材料研究機構		
15	TiN coated SUS304			
16	MoS2 coated SUS304			
17	MoS2 coated Ti alloy	(株)アイ・エイチ・アイ エアロスペース	宇宙用固体潤滑剤	
18	張力負荷 ポリイミドフィルム (UPILEX-S)		宇宙用膜構造物用構造材料	
19	耐原子状酸素性向上型 ポリイミドフィルム	宁宁明然事举田	字字田教制御材料/フィルル)	
20	フレキシブル 太陽光反射素子		于田田然前御初科(ノイルム)	
21	白色塗料		宇宙用熱制御材料(塗料)	
22	シリコーン系接着剤		宇宙用接着剤	
23	シリコーン系 ポッティング剤		宇宙用ポッティング材	

曝露実験条件及び地上対照試験条件

*現在、搭載環境モニタ材により実曝露環境を解析中

曝露実験試料の評価内容

曝露実験試料の評価項目 1.外観検査(光学顕微鏡観察) 2. 質量計測 NASDAで一括実施(完了) 3.太陽光吸収率(_s) 4.垂直赤外放射率(№) 5.各試料固有の特性評価(非破壊試験、破壊試験) 例)熱制御材料:材料分析、引張試験 構造材料 : 材料分析、引張試験 各搭載試料提案機関で 固体潤滑剤:材料分析、摩擦試験 実施(現在 実施中) その他、せん断引張試験、電気特性測定、 硬さ測定、走査型電子顕微鏡観察など

現在、第4項の垂直赤外放射率(N)までの評価を完了し、第5項の各試料固有の特性評価を各提案機関において実施中である。今回は、NASDAで一括実施した第4項までの評価結果の概要について報告する。

耐原子状酸素性向上型ポリイミドフィルム

外観:曝露実験試料(Flight)は曝露前(Blank)と比較すると僅かに着色した。 質量(M):曝露実験試料と地上対照試験試料(Ground)を比較すると曝露実 験試料の方が大きく減少(減少率:5%)した。地上対照試験の結果では耐AO性 向上の効果が見られたが、実宇宙環境におけるAQUV、EBの複合照射の影響 が大きい。

熱光学特性:曝露実験試料及び地上対照試験試料はいずれも太陽光吸収率(s)が増加した。地上対照試験の結果ではUVの影響(約30%の増加)が顕著である。垂直赤外放射率(N)には、大きな変化は見られなかった。

フレキシブル太陽光反射素子

外観:顕著な変化は見られなかった。

質量(M):地上対照試料のAO単独照射で大きな減少(減少率:0.7%)を示した。

熱光学特性:太陽光吸収率(_s)は、地上対照試験試料のUV単独照射で 顕著な増加(増加率:約180%)を示した。垂直赤外放射率(_N)には大きな変 化は見られなかった。

白色塗料

外観:曝露実験試料は、曝露前と比較すると、極僅かに褐色に変化した。 質量(M):曝露実験試料及び地上対照試験試料とも減少した。地上対照 試験試料のAQ UV単独照射で大きな減少(減少率 AO:0.4% UV:0.3%) を示した。

熱光学特性:太陽光吸収率(_s)は、地上対照試験試料のAO単独照射 で最大の変化(増加率:約10%)を示した。垂直赤外放射率(_N)は、大き な変化は見られなかった。

張力負荷ポリイミドフィルム(UPILEX-S)(1)

無負荷(低張力負荷(4.12N)、高張力負荷(20.59N)の3種類の試料を曝 露実験に供した。曝露面から順番に1、2、3、4枚目とし、4枚重ねで搭載し た。

外観:宇宙空間に直接曝露される1枚目の曝露部分が、AOで侵食されていた(曝露前試料厚さ:125µm)。2枚目以降の試料に関しては、変化はなかった。

質量(M):無負荷試料では、約1.3%の減少率、張力負荷試料では、約0.4%の減少率であった(4枚重ねー式)。

曝露実験試料張力負荷ポリイミドフィルム(4.12N) (1枚目)の曝露部断面の光学顕微鏡観察結果

張力負荷したポリイミドフィルム(4.12N)(4枚重ね)

張力負荷ポリイミドフィルム(UPILEX-S)(2)

顕微鏡観察の結果、曝露実験後の試料には、若干の汚染 が観察された。

その他の試料

シリコーン系 接着剤 曝露実験試料には、外観に顕著 な変化は見られなかった。質量変 化率は、最大で約0.7%の減少であ った。

拡大図

シリコーン系ポッティング剤 曝露実験試料には、外観に顕著 な変化は見られなかった。質量変 化率は、約0.01%の減少であった。

SM/MPAC第1回回収試料の解析結果(中間報告)

SM 微小粒子捕獲実験装置搭載捕獲材料

	搭載捕獲材料名	実験提案機関	使用目的	
1	アルヨ板		微小粒子衝突頻度の計測	
2	シリカエアロジェレ	宇宙開発事業団	微小粒子衝突エネルギ、組成等の分析	
3	ポリイミドフォーム		微小粒子衝突エネルギ、組成等の分析	

材質 : アルミニウム

材質 : SiO₂

材質	•	ポリイミド
密度	•	0.01 g/cm ³

アルミ板

レーザ顕微鏡で観察した結果 2点 の衝突痕を識別した(全体面積: 207.4 cm²)。 識別できた衝突痕の数は、宇宙環境 モデルによる予測結果より少なかっ た。識別できたものより小さな衝突痕 があると考えられるが、アルミ板表面 の傷との判別が困難な状況である。

衝突痕 平均直径:約26.0 µm 深さ:約13.0 µm

アルミ板衝突予測結果

捕獲粒径	2004年[4年間]	2001~2002年	2001~2003年
[µm]	2001年[1年间]	[2年間]	[3年間]
5~ 10	12個	24個	36個
10~ 50	9個	19個	28個
50~ 100	1個	2個	3個
100~ 1,000	0.3個	0.7個	1個

*周囲構造物による遮蔽効果を無視

シリカエアロジェル(1)

目視観察にて識別した2点の衝突孔の顕微鏡観察結果

画像	断面形状(推定)	対応する形状の地上試 験例	微小粒子推定衝 突速度と入射角度	微小粒子 推定粒径
衝突孔1 「斜め上方よりの画像」	2mm程度 イ45 5mm 程度 [深注値は目視による推定]	です。 です。 です。 です。 です。 です。 次小粒子の粒径:160µm(平均) 微小粒子の衝突速度:6.5km/s 微小粒子の入射角度:45度	速度: 5~10km/s 角度: 約45度	粒径: 200~250 m m
			 ・速度は孔の深さ/ 入り口径比から推定 (次頁図1参照)。 ・角度は孔形状から 推定。 	・微小粒子粒 径と孔の入り 口径との相関 データから推 定(次頁図2参 照)。
衝突孔2	1mm程度 /	微小粒子の粒径:55µm (平均) 微小粒子の衝突速度:9.8km/s 微小粒子の入射角度:90度(垂直)	速度:10km/s以上 角度:不明	粒径: 約100 m m
し .2mm [上方よりの画像]			 ・速度は孔の深さ/ 入り口径比から推定 (次頁図1参照)。 ・「クレーター」形状の 場合、入射角度は識別困難。 	・微小粒子粒 径と孔の入り 口径との相関 データから推 定(次頁図2参 照)。

シリカエアロジェル(2)

・エアロジェルの地上対照試験結果

図1 微小粒子の衝突速度(V_{imp})に対する衝突孔扁平度(深さ[T] /入り口径[D_{ent}]) 図2 微小粒子の粒径(D_p)に対する衝突孔入り口径(D_{ent})

汚染の解析結果(中間報告)

汚 染

WAKE面全体

エアロジェル拡大

4mm

参考: RAM面の状態

SM/MPAC&SEED

WAKE面は、RAM面に比べ全体的に汚染。 ISSスラスタからの汚染と考えられる。
エアロジェル表面を拡大すると細かなひび割れが存在。

今後の分析スケジュール

1.SEED試料:搭載試料提案機関による各試料固有の分析、 評価(材料分析、摩擦試験など)を実施中 (~8月(TBD))

- 2.MPAC捕獲材料:引続き、衝突痕、衝突孔の形状等の詳細評価 中。捕獲微小粒子の組成分析、飛来方向解析 等を実施予定(~8月(TBD))
- 3.その他 汚染物質の材料分析 UVモニタガラスの衝突痕評価

まとめ

SM/MPAC&SEED実験試料に関して、評価を進めつつある。 本実験の成果は、部品・材料の貴重な宇宙実証データとして、 各プロジェクトの確実な遂行に反映していく。

汚染状況分析によりISSの汚染環境を評価し、今後のISSの 運用、利用に貢献する。

今後も、機会がある毎に材料曝露実験を実施し、異なる軌道 環境における微小粒子環境の把握、部品・材料の耐宇宙環境 性評価等を行うことにより、信頼性の高いデータ蓄積を押し進 め、宇宙機の信頼性向上へ寄与していく。